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We investigate time-dependent properties of a single-particle model in which
a random walker moves on a triangle and is subjected to nonlocal boundary
conditions. This model exhibits spontaneous breaking of a Z2 symmetry. The
reduced size of the configuration space (compared to related many-particle
models that also show spontaneous symmetry breaking) allows us to study
the spectrum of the time evolution operator. We break the symmetry explicitly
and find a stable phase, and a metastable phase which vanishes at a spinodal
point. At this point, the spectrum of the time evolution operator has a gapless
and universal band of excitations with a dynamical critical exponent z = 1.
Surprisingly, the imaginary parts of the eigenvalues Ej(L) are equally spaced,
following the rule JEj(L) oc j/L. Away from the spinodal point, we find two
time scales in the spectrum. These results are related to scaling functions for the
mean path of the random walker and to first passage times. For the spinodal
point, we find universal scaling behavior. A simplified version of the model
which can be handled analytically is also presented.

KEY WORDS: Random walk; phase transitions; spontaneous symmetry
breaking; spinodal points; free energy functional; universal scalings.

1. INTRODUCTION

Spontaneous symmetry breaking in non-equilibrium statistical mechanics
was recently observed in several one-dimensional many-particle models.(1-5)
In this paper we consider a single particle random walker model(6) which
exhibits symmetry breaking of a Z2 symmetry. We investigate the spectrum
of the time evolution operator and stationary and time-dependent proper-
ties. The random walker moves in the two-dimensional geometry of a dis-
cretized right-angled triangle. In the interior of the triangle it may hop
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locally to neighbouring sites, whereas on the two short sides it may jump
non-locally to a corner. Unusually for a one particle model the simple
model, studied here shows spontaneous symmetry breaking. Considering
the infinite volume limit, the particle stays in one corner of the triangle and
no longer reaches the opposite corner which is reflected under the sym-
metry. This yields two equally stable phases.

Breaking the symmetry explicitly by an "external field," one of the
stable phases first becomes meta-stable, before one reaches a spinodal point
where it becomes unstable, if the field is sufficiently strong enough. Hence
one can investigate metastability and spinodal points in non-equilibrium
processes with the simple random walker model.

The random walker on a triangle (RWT) model is defined as follows.
The walker moves on the triangle

We define the following processes for the random walker at site (j,k)
where p is the probability of a transition in an infinitesimal time step dt:

The first four processes are local hops to neighbouring sites on the triangle,
the last two are non-local jumps to the corners (1, L— 1) and (L— 1, 1)
respectively. For h = 0 the definitions are invariant under reflection on the
line j = k. We fix the unit of time choosing c= 1/2. This renders the prob-
ability rates dimensionless. The defined dynamics is the same as the one
considered in ref. 6 up to a relabelling of the sites.

In the following we also impose the condition a + b =1/2, which
makes the RWT model the "zero-temperature" limit of a three-state
model(1,6) which shows spontaneous CP symmetry breaking. (Therefore
the reflection symmetry of the RWT model will also be denoted as CP sym-
metry in the following.) It would be interesting to study the general case
a + b^ 1/2 as well. In the three-state model, positive and negative particles
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Fig. 1. Simplified phase diagram of the three-state model. In the "low-temperature" regime
A the symmetry is spontaneously broken for h = 0 where h is the strength of a symmetry
breaking field. It is separated by a line of spinodal points from the "high-temperature" regime B.

hop among vacancies on a one-dimensional chain. The C operation inter-
changes positive and negative particles, and the P operation interchanges
left and right on the chain. The investigation of the free energy functional,
and of the flip times between stable and meta-stable phases, leads to the
phase structure given in Fig. l.(8) In the CP-symmetric case, one finds two
broken phases(7) for "low temperatures" (in this model the output rates of
the particles play the role of a temperature) and a disordered phase for
"temperatures" above Tc. At the critical point (T=Tc,h = 0), one finds a
dynamical critical exponent (see Section 2 and ref. 17 for a definition)
2 = 2, which is connected with the appearance of shocks.(8-11) Breaking the
symmetry explicitly, one finds a "low-temperature" regime A with a stable
and a metastable phase. This regime is separated by a spinodal line from
the regime B (Fig. 1). At the spinodal line, a previous investigation
suggested 2 = 1 for h^0.(8) This motivated us to study time-dependent
properties, metastability and spinodal points in more detail. All these are
manifestly associated with non-equilibrium models.(12)

Another model which shows spontaneous CP symmetry breaking is
the two-state (particles and vacancies, the C operation interchanges these)
asymmetric exclusion model.(2-4) The symmetry is broken on the
coexistence-line. There the free energy functional is flat (see Appendix A in
ref. 8) like in the model discussed above(1,8) at the phase transition point
and like in equilibrium physics. In the spontaneously broken stationary
state, shock profiles (connected with a dynamical critical exponent z = 2)
appear. But breaking the symmetry one does not find a region with a meta-
stable phase, and hence there are no spinodal points present in the model.

The time evolution of the RWT model is given by the master equa-
tion(13)
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where |p> is the vector of the probabilities P(j, k) of finding the random
walker at site (j, k). The "hamiltonian" H is the time evolution operator
and is determined by the processes (1.1). The stationary properties of the
system are given by the ground state |p0> with H |p 0 >=0, and the
dynamical properties are given by the excitations of H.

The configuration space of many-particle models grows exponentially
with the system size in contrast to the configuration space of the RWT
model which has dimension L(L— 1)/2. This polynomial dependence on L
enabled us to investigate the spectrum of the model. By numerical
diagonalization of the hamiltonian, we found an interesting two band
structure of the spectrum, which leads to two gaps or time-scales. At the
spinodal point hc = a / ( 1 — a ) (cf. ref. 6), one scale vanishes with critical
exponent x = 2 and the lower part of the spectrum has the form Ej = akj/L.
The constants kj are universal, and do not depend on the remaining
parameter a. This reminds one of the critical spectrum of a quantum spin
chain related to a nonformal field theory. As a surprise, the imaginary parts
of the constants kj have the form Jkj = j J k 1 . For the real parts, we do not
find any regularity.

The value of hc has already been conjectured in ref. 6. It is also predicted
by taking the "zero-temperature" limit of the mean-field results for the
three-state model discussed in ref. 8. There, mean-field theory was found to
be compatible with simulations for small "temperatures" (output rates).

Besides the study of the time evolution operator one can, as with other
models, investigate the free energy functional (FEF) of the RWT model.
This functional f is defined as:(8,14)

where d is an order parameter of the model and P0(d, L) denotes the
corresponding stationary probability distribution.(8) For the RWT model,
we take

as the order parameter.
Analogously to the "low-temperature" regime of the three-state model,

one finds that the FEF of the RWT model has two global minima
(d= — 1, +1) in the CP-symmetric case (h = 0). In the limit L-> oo, the
symmetry is spontaneously broken and there are two equally stable phases
with d= +1. For O<h<hc, the dynamics (1.1) favors the movement to
lower values of the order parameter and the FEF has a global minimum
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(d= — 1) and a local minimum (d= +1). This leads to the existence of a
stable and a meta-stable phase in the infinite volume limit (L-> oo), the
random walker staying near the favored corner F = ( 1 , L — 1) and the
unfavored corner U= (L — 1, 1) respectively. Above hc there exists only one
phase, the random walker always staying around F. This is also reflected
in the spectrum of the hamiltonian (1.2), since one has two ground states
for L -> oo and h< hc and only one for h > hc.

It is also possible to measure the flip time from one phase to the other
using Monte Carlo simulations. At the spinodal point, one observes a dis-
continuity in the passage time from the corner U to the corner F. At and
above hc, the average time taken to reach the corner F grows linearly
with L. However, there is a discontinuity in the proportionality constant as
one approaches hc from above. The linearity above hc can be explained by
a mean-field argument, the linearity at hc cannot. The time taken to reach
the corner U and the time taken to reach the corner F for h < hc grow
exponentially with L.

Using Monte Carlo simulations, one can also investigate the movement
of the random walker starting from specific initial conditions. Analysing the
mean path, one again identifies two time scales away from the spinadal
point, and at the spinodal point, one again finds universal behavior.

All the results found here for the RWT model are in accordance with
the results found for the three-state and the asymmetric diffusion models.
But the detailed analysis of the spectrum of the time evolution operator
now suggests a link between the time-scales found in the spectrum, the
time-scales found in the flip times, and the scales one observes in the move-
ment of the random walker. This was not observed before.

The random walker on a triangle can be simplified to a random
walker on a right angle (RWRA) model which can be handled analytically
while still possessing a meta-stable phase. This is done taking b = 0 and
keeping only the points (j, k ) € J L with j=1 or k = 1. That is, we consider
only the movement along the j- and k-axes, where macroscopic jumps
occur. In an infinitesimal time interval dt the following processes can occur
with a probability p:

The RWRA model is essentially a one-dimensional (albeit non-local) ran-
dom walker model. Again we limit our investigation to the case c = l/2
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(this fixes the unit of time) and a = a + b = 1/2. We checked that takings
different from 1/2 does not change the physics of the RWRA model. One
is able to calculate exactly a characteristic equation for the eigenvalues of
the time evolution operator, the free energy functional and the flip times.
The spinodal point is at hc= 1. Since all rates in (1.5) have to be positive
one can study with the RWRA model only the regime below the spinodal
point. The results are given in Appendix C.

The paper is organized as follows. In the next section, we present our
results on the spectrum of the hamiltonian of the RWT model. We identify
two time scales, one of which vanishes at the spinodal point. At this point,
the low-lying excitations acquire a universal L-1 dependence yielding z=1.
We also show that finite-size scaling relations hold.

In Section 3, we compute the FEF of the RWT model and present our
Monte Carlo results on the passage times from the favored corner F to the
unfavored corner U and vice versa. Two scales can be measured and
related to the depths of the minima of the FEF and to gaps in the spectrum
of H found in Section 2.

In Section 4, we give results on the movement of the random walker
that mirror the scales found for the spectrum (Section 2). At the spinodal
point, one finds a non-trivial universal behavior that also reflects the
dynamical exponent z = 1. Section 5 contains our conclusions.

In Appendix A, we give some simple results for the movement of the
random walker for h above the spinodal point. In Appendix B we explain
the connection between the flip times and the spectra of models with
absorbing configurations. In Appendix C we investigate the random walker
on a right angle model.

2. SPECRTRUM OF THE HAMILTONIAN

Using a modified version of the Arnoldi algorithm,(15) we have
calculated the low-lying eigenvalues (up to the 30th level) of the time
evolution operator H for L<220, various values of h, and a =0.001, 0.1,
0.25, 0.4. Apart from the ground state "energy" E0(L) = 0, the further eigen-
values of the non-hermitian matrix H are positive, or complex with positive
real parts. Since the hamiltonian matrix has real entries only, complex
eigenvalues come in conjugated pairs. Typical results for the real part of
the spectrum (for a = 0.25, h = 0.3) are shown in Fig. 2. One identifies two
bands of excitations leading to the gaps (time scales) m1 and m2 in the
large L limit. Note that the excitations correspond to energy gaps, since the
ground state energy of H is zero for any system size.

Values for the large L limit were extrapolated from data for finite L
using the Bulirsch-Stoer algorithm.(16)
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Fig. 2. Dependence of the spectrum on system size. The data is from numerical diagonaliza-
tion for a =1/4, h = 0.3. Shown are the real parts of the eigenvalues of H. The gaps m1 and
m2 extrapolate to finite values as seen in Fig. 3.

The most important observation is that there exists a critical spinodal
point at hc = a/(1 — a) (see Fig. 3). At this point, the system loses one of its
time scales (m 1 =0) and acquires a band of excitations with a universal
L-1 dependence.

The results for the spectrum of H can be summarized as follows:

• first excitation: For h < hc the first excited energy level approaches
zero as

This excitation is real, the higher excitations are complex conjugated pairs.
Thus, in the limit L -> oo, there are two ground states. Linear combinations
of the eigenvectors give two phases.(7) For h = 0 they are equally stable,
while for h > 0 one of them is stable, and the other is meta-stable. The two
phases correspond to minima of the free energy functional at d = 1 and
d= — 1 (see Section 3). The meta-stable phase vanishes at the spinodal
point hc. Above hc, there is only one ground state for L-» oo, i.e., none of
the excited levels approaches zero.

• higher excitations: Above E0 and E1, there are two bands of
complex eigenvalues of the form
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The gaps m1 and m2 are real, whereas the constants k(i) have imaginary
parts, such that one has complex conjugated pairs of eigenvalues. One finds
that m1, is proportional to w. For a = 0.25, we find m1 = 0.57(4) w.

For h = 0 one has m1=m2 and the constants k(1) = k(2)=k are inde-
pendent of j, i.e., the 1/L term is the same for all excitations in contrast to
Eqs. (2.2) and (2.3) for h>0. There are two ground states (compare
Eq. (2.1)), corresponding to equally stable phases.

For h > hc the excitations again come in the form of two bands as in
Eqs. (2.2) and (2.3).

• lower gap: For h -> hc, the lower gap m1 vanishes, as does w, which
is proportional to m1. For h<hc, the gap is given by m1 =limL^ao E2(L).
Above hc, the first excitation does not give a second ground state for
L->oo and one finds a non-zero gap m1 =limL__c o E 1 (L ) . The gap m1

given by

where the numbers are given for a = 0.25. Note that these equations are
valid for any h and not only in the vicinity of hc. One finds an exponent
x = 2.00( 1) for h < hc and h > hc. Extrapolated values for the mi are shown
in Fig. 3.

The position of the minimum of the parabola Eq. (2.4) determines the
spinodal point at hc = a/(1 — a) with a precision of two digits.

Fig. 3. Length scale w, and upper and lower gaps m1 and m2 for a = (1/4). The values given
are extrapolated from data of numerical diagonalization of H up to L = 220.
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• upper gap: The scale m2 increases monotonically with h over the
entire range 0 < h < 1. One finds

for a = 0.25.

• lower band of excitations at h = hc: At the spinodal point, the lower
band is of the following form:

with the extrapolated values k(1) given in Table I. One has universality:
apart from the normalization constant a ("speed of light"), the leading
terms are the same for any critical point hc(a) =a/(1 —a). Extrapolation of
the K(1) for a = 0.25, 0.4, 0.1 gives the same result with 5 digits precision. At
the spinodal phase transition, the dynamical critical exponent(17) is z = 1
(i.e., the exited levels vanish in leading order with L - 1 ) , as was found for
the three-state diffusion model where, however, this was only seen fo,r the
first excitation.(8)

The imaginary parts of the numbers k(1) follow (see Table I)

This equidistant spacing comes as a surprise and we do not know its
reason. For quantum spin chains related to a conformal field theory one

Table I. Excited Levels of H at hc: E j=a(k j / / I ) a

level

1
2
4
6
8

10
12

R(k(1))

1.7080
8.4980

10.368
11.504
12.324
12.97
13.5

J(k(1))

0
12.7663
25.771
38.548
51.241
63.89
76.52

J (k ( 1 0 ) /12 .81

0
0.997
2.012
3.009
4.000
4.988
5.994

a Complex excitations come in conjugated pairs.
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expects regularities (nonformal towers) for the real parts of the k(1).
However, we could not detect any such structure looking at the real part
of the spectrum. This should be a result of the reduced state space of the
RWT model. Because of the large configuration space of the full three-state
model, a similar analysis was not possible there. For the higher band of
excitations at the spinodal point, one again has the form of Eq. (2.3).

• finite-size scaling analysis: Finite-size scaling relations, which
describe the behavior of finite quantum spin chains in the vicinity of an
(equilibrium) critical point of the infinite system,(18) apply also to the (non-
equilibrium) RWT model at hc. Consider the curves

The critical point hc can be determined from extrapolation of the crossing
points hcross(L) of the curves FL and F L _ 1 . Indeed one finds

for a = 0.25. This isle the most precise numerical determination of hc.
Following the finite-size scaling hypothesis, one can also determine the

critical exponent x in a way different from that of Eq. (2.4).(18) From the
available data up to L = 220, one again finds x = 2.0(2).

In the following sections, we discuss further properties of the RWT
model that can be related to the scales of the spectrum and to the univer-
sality at the critical point. The scale w> can be linked with flip times and the
stationary FEF (see next section). In Section 4, we present dynamic quan-
tities related to the properties of H, specifically to the gaps mi.

3. FREE ENERGY FUNCTIONAL AND FLIP TIMES BETWEEN
PHASES

We have investigated the behavior of the stationary probabilities
P0(j, k) for different h. These probabilities were determined from the sta-
tionary state as computed by numerical diagonalization of the hamiltonian
(see Section 2). First, we remark that for h = 0 all eigenstates are also
eigenstates of the CP operation. We find that the eigenvectors correspond-
ing to the complex conjugated pairs of eigenvalues E(1) of the lower band
of excitations (2.2) are CP+ for j even and CP- for j odd.

One also finds that, for any h and finite L, the eigenvector |p0> with
eigenvalue E = 0 is the only vector that directly corresponds to a probabil-
ity distribution, i.e. all its entries are positive. In the case h = 0, |p0> has
CP+ symmetry.



Metastability and Spinodal Points for a RWT 847

Hence, for h = 0, the free energy functional f ( d ) , defined in Eq. (1.3),
is symmetric under the inflection d-* — d. (From the data, one finds that
the free energy functional is a well defined limit as was already known for
the asymmetric exclusion model and the three-state diffusion model.(8))
There are minima at d = — 1 and d — 1 and a maximum at d = 0. The minima
correspond to the two equally stable phases (see Fig. 4), This is basically
the same situation as for the CP-symmetric three-state model in the "low-
temperature" phase.

For 0<h<hc, one has a global minimum at d= — 1 and a further,
shallower minimum at d= 1 (see Fig. 4). This reflects the fact that one of
the phases becomes meta-stable. One can define two scales:

where fmax is the maximum value of f ( d ) . We shall relate these scales to
the time the system needs to flip from one minimum to the other. At hc,
the second minimum of f (and hence the meta-stable phase) vanishes. This
cannot be seen in Fig. 4 but can be inferred from the results for smaller
lattice sizes. For h>hc, the free energy has only one minimum at d= — 1.

Analysis of the eigenvectors of H that become the steady states in the
large L limit, and the relation of the RWT to the three-state diffusion
model, have given the result that below hc there are two distinct phases

Fig. 4. The free energy functional fL(d) for a= 1/4, L = 100 and h = 0.0, 0.1,0.2, 0.3333, 0.4.
The values are shifted by the value fL( -1). The data is generated by numerical diagonaliza-
tion of the hamiltonian. Since the precision is limited to 10 -12 the curves for larger ft cannot
be fully determined.
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with order parameter values d= 1 and d= — 1. Above hc, however, there is
only one phase: the walker stays near the favored corner F of 2TL. This can
be verified with Monte Carlo simulations. In a way similar to that for
three-state diffusion model,(1,8) one can measure the time for the RWT
model to flip from one phase to the other. One finds that, for large L and
h<hc, in the neighbourhood of a corner F = (1, L— 1) or U = (L— 1, 1),
the random walker moves through the configurations on a shorter time
scale than is needed to get from one corner to the other. This allows one
to measure the flip times Tlong from favored to unfavored and Tshort from
unfavored to favored phase as average first passage times from F to U and
U to F respectively.

With c = 1/2 and a + b = 1/2, the unit of time is defined such that, on
average, the random walker moves one step (1.1) per unit. From the
simulations, one finds that, to leading order, the flip times are given by

For h<hc, the time intervals the random walker spends alternately near
either corner increase exponentially with L. The fraction of time in the
meta-stable region decreases exponentially. In this sense, for h<hc, there
are a meta-stable and a stable phase. Results of the measurement for
a = 0.25 and h = 0.1 are presented in Fig. 5.

Fig. 5. The flip times Tshort(L) and Tlong(Z,) for a= 1/4 and A = 0.1. The fitted lines are given
by 50 exp(0.2L) and 500 exp(0.052L).
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For h >hc, the proportionality constant in Eq. (3.3) can be calculated
by a simple argument, see Appendix A:

In contrast, the appearance of a linearly growing flip time at h = hc is
non-trivial. One finds the form

where y = 0.57(6) is a positive constant and independent of a to a precision
of about 10 %. Up to the normalization a, the short flip time is, to leading
order, a universal function of L as are the leading terms of the lower spec-
trum Eq. (2.6). The appearance of a universal linear flip time is linked to
the universal 1/L spectrum of the hamiltonian, compare Eq. (2.6). One can
ask how general this universal behavior is. Similar investigations for other
models remain to be done.

Note that from (3.4) and (3.5) one finds that to leading order

Hence there is a discontinuity in the flip time Thc. At the spinodal point,
Thc has a special L dependence, essentially different from its behavior
above or below this point.

The values of vsmall and vlarge in (3.1), determined from numerical
diagonalization of H for L < 140, and measurement of the flip times, up to
L = 200 for Tshort and L = 40 for Tlong, yield the following result:

As an example for h = 0.1 and a = 0.25, we find the values ushort = 0.044(3)
and ulong = 0.16(2) (see Fig. 5) which is to be compared with vsmall = 0.05(5)
and vlarge = 0.17(2) (see Fig. 4). For h = 0 and a = 0.25 the equations (3.7)
can be checked to three digits; the precision decreases with increasing h to
about one digit at h = 0.3. (Finite-size corrections to (3.1), (3.2) and (3.3)
become more important for higher h due to crossover effects to the linear
regime for h > h c . )

Equation (3.7) is interesting because it relates (steady state) properties
of the free energy functional f ( d ) with (dynamical) flips between phases.
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This is unexpected for a non-local model without detailed balance. For the
RWRA model (Appendix C) an analogous link can be made analytically.
Also, for the three-state diffusion model, similar observations, albeit with
less precision, were made in ref. 8.

One also finds that nshort= w (recall that E1 oc exp( —wL) is the first
excitation of the hamiltonian, see Eq. (2.1)). For h = 0.1 and a = 0.25 the
value of w from numerical diagonalization is 0.048(3). The reason for this
connection, together with an analogous expression for ulong is given in
Appendix B. where we consider modified models with absorbing configurations.

4. TIME SCALES AND CRITICALLY IN THE MOVEMENT OF
THE RANDOM WALKER

To find macroscopic physical quantities reflecting the time scales of
the spectrum and the critical behavior at hc, we investigated the movement
of the random walker starting from the specific initial positions
U = (L — 1, 1) (unfavored corner) or F = (L — 1, 1) (favored corner). In the
following we concentrate on the time dependence of the order parameter
coordinate. Defining the average order parameter distance from the starting
point as

the start configuration corresponds to s = 0 and the opposite corner of the
triangle &"L to s = 1.

Start at Unfavored Corner

First, we consider the random walker starting at the point U. We shall
see that the movement from the unfavored to the favored corner is linked
with the lower excitations of the hamiltonian.

Typical pictures of the walker's position s(t) are given in Figs. 6-9. In
Fig. 6 we show the product L • s as a scaling function of t, in Fig. 7 the dis-
tance s as a scaling function of t/Tshort (both for h below the critical point),
and in Figs. 8 and 9 the distance s as a scaling function of t/L (at and
above the critical point respectively). One observes the following properties
of the scaling functions:

• h<hc: The random walker stays near U for an average time
exponentially increasing with L (Eq. (3.3)). For large L, the path near the
unfavored corner (start) is described by the scaling function
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Fig. 6. Average distance s ( t ) from starting point U = ( L — 1 , 1). Data from simulation of
the RWT model for a = 1/4, h = 0.3 and system sizes L=100 (solid), 200 (long dashed),
400 (short dashed), 600 (pointed). The scaling variable is t.

Here we find A = 1.8(2) - m 1 ( h ) for a = 0.25. Due to the distribution of flip
times for finite L the walker leaves this regime at different times (Fig. 6).

For the approach to the favored corner, one observes a different scaling
(Fig. 7). From the data, one finds that s is given by

Fig. 7. Average distance s(t) from starting point U = (L - 1, 1). Data from simulation of the
RWT model for a =1/4, h = 0.3 hc. The solid curve represents the data for L=100, the
dashed for L = 600.
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where

In Eq. (4.3), the constant 1= 1.15(3) is independent of a. The approach to
the favored corner scales with t/Tshort. In the scaling of Fig. 7, the initial
path (Eq. (4.2) and Fig. 6) of the random walker cannot be seen because it
is reduced to a point.

• h = hc: We consider the scaling regime t-> GO and L-» oo, taking
t/L fixed. For t <Tshort/2 = L/2a, the distance from the starting point
increases in leading order linearly with time. We find

where 6 = 0.11(2) independent of a. For large t>T s h o r t /2, the random
walker approaches s=1 exponentially, as in the case h^hc. The scale,
however, is the size of the system

with K= 1.7(1) independent of a. Typical data is shown in Fig. 8.

Fig. 8. Average distance s(t) from starting point U = (L — 1, 1). Data from simulation of the
RWT model for a 1/4, h = hc. The solid curve represents the data for L= 100, the dashed
for L = 400.
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Fig. 9. Average distance s(t) from starting point U = (L— 1, 1). Data from simulation of the
RWT model for a =1/4, h = 1 / 2 > h c . The solid curve represents the data for L=100, the
dashed for L = 400. The scaling variable is t/L.

At the critical point, the initial path of the random walker Eq. (4.5) is
universal and linear to leading order. This reflects again the universal 1/L
spectrum found for the critical point (2.6). It is remarkable that the
exponential scale of Eq. (4.6) is also universal (but not the scaling func-
tion). Up to the time normalization (as in Section 2), they do not depend
on a and scale with tL-1.

• h>hc: Again we study the scaling t/L fixed taking t and L to
infinity. Starting from the unfavored corner U, at first (for t< Tshort) and
to leading order the random walker follows a mean path determined by its
velocity vector (see Appendix A). The corrections are exponential in t. We
find

With increasing h, the constant £ decreases and £, increases and thus the
corrections become smaller, consistent with the explanation of Appendix A.
For t> Tshort, one again finds an exponential approach to the final value
s=1 (see Fig. 9). One has



where Tshort is given by (3.4). The scale is the gap m1 from the spectrum
of the time evolution operator. Following Appendix A, one finds the
prefactor

Start at the Favored Corner

We have also studied the path of the random walker starting from F.
In that case the critical point hc does not play a special role. From the
simulations, one finds

where k= 1.25(5) • m2(h) for a = 0.25. This equation is similar to Eq. (4.2),
but note that in this case the movement is related to the time scale m2 that
describes a faster movement than the time scale m 1.

In summary, from the study of the movement of the random walker
described in this section one can identify different scales. They are related
to those excitations of H that describe the movement in question. One finds
that the lower band of excitations (slow modes) is related to the path from
F to U and the higher band (fast modes) to the movement around the
favored corner F. This is confirmed by the results of Appendix B for the
model with absorbing configurations. For hc, we find a scaling function
involving only the system size L as a scale, and depending on tL - 1 . This
scaling is analogous to the case of conformal invariance in critical equi-
librium systems.

We want to point out that, of course, the described scaling properties
can also be found by investigating order parameters different from d.

5. CONCLUSIONS

In this paper, we studied the spectrum of the time evolution operator
and other time-dependent properties of the two-dimensional non-local
random walker (1.1). This model is a simple example of a class of non-
equilibrium models which exhibit spontaneous breaking of a Z2 symmetry.

The reduced size of the configuration space of the single particle model
of this paper allowed us to determine the spectrum numerically with
enough precision to extract the gaps (time scales) and the large L limit of
the low excitations. For many-particle models a numerical investigation of
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the spectrum is much more difficult and has not been done. The investiga-
tion of the spectrum of the RWT model led us to the following discoveries.

Breaking the symmetry explicitly with a small h > 0, one is left with
two phases, a meta-stable and a stable one, in accordance with the fact that
the time evolution operator of the model has two ground states in the large
L limit. Above the two ground states, one has two bands of excitations
corresponding to two time scales.

At the point hc = a / ( 1 — a ) the meta-stable phase becomes unstable
and, above that point, one is left with only one ground state and corre-
spondingly one (stable) phase. This spinodal point has very interesting
properties. Fixing h = hc, not only does one of the time scales vanish, but
the corresponding excitations also acquire the form Ei = aki/L. Hence, it is
universal in the sense that the constants ki do not depend on the remaining
free parameter of the model.

At h=hc, the dynamical critical exponent is z= 1, and the time scale
vanishes with an exponent x = 2. Looking for "conformal towers," we did
not find any regularities in the real part of the spectrum, but could show
that the imaginary parts of the ki have equidistant separations. We believe
that the 1/L dependence on the system size is a more general phenomenon
(z= 1 for the first excitation had already been found for the three states
model in ref. 8) and expect more structure to be found for the spectrum of
many-particle-models at their spinodal points. The missing "conformal
towers" for the RWT model may be a result of the reduced configuration
space. Whether such a spectrum has further deep implications, as would be
the case for equilibrium problems where one has conformal invariance,
remains uncertain.

Besides the numerical diagonalization, we performed simulations of
the model to identify the physical relevance of the time scales. The lower
gap is linked with the movement from unfavored to favored phase (slow
modes), the higher gap with the movement within the favored phase (fast
modes). We could identify different scaling regimes for the movement of
the random walker starting at specific sites. The scaling functions reflect the
time scales found for the hamiltonian. At the spinodal point, the appro-
priate scaling variable for the movement starting from the unfavored phase
is t/L and the corresponding scaling function is universal.

We also measured the first passage time for the random walker
between stable and meta-stable phase. We found that, below the critical
point, both these flip times increase exponentially with L. The flip times
can be computed from the excitations of a modified model with absorbing
configurations (Appendix B). At the critical point, the first passage time
from the unfavored to the favored corner of the triangle has a non-trivial,
universal linear dependence on L, consistent with the dynamical critical
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exponent z = 1. The proportionality constant is different, by a factor of two,
from its value above the spinodal point where the flip time also increases
linearly with L. (There it can be calculated by a simple argument.)

As with the three-state model, we have also investigated the free
energy functional as a function of the order parameter d (1.4). Surprisingly
for a non-local model without detailed balance (but analogous to the three-
state model), we observed a link between steady state properties (the free
energy functional) and non-stationary dynamics (flip times).

Those of the described results that relate to the region h < hc can also
be found in a simplified, one-dimensional random walker model (RWRA
model, see Appendix C). For this model one can calculate the free energy
functional, first excitations and flip times analytically. The further reduction
of the configuration space leads to the different critical exponent x = 1
instead of x = 2.

APPENDIX A. MOVEMENT OF THE RANDOM WALKER
FOR h>hc

In the interior of the triangle 3TL, the random walker defined by (1.1)
has an average velocity of
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independent of the site (j, k). here, the first coordinate is along the j-axis
(number of — particles) and the second along the k-axis (+ particles). The
projection onto the direction of the order parameter d is given by

Repeating the argument of Ref. [6], one sees that for small h both
components of v are negative. The walker near either of the corners
(L — 1,1) or ( 1 , L — 1 ) drifts towards the j- or k-axis and subsequently
jumps back to the respective corner. At hc = a/(1—a), the velocity is
antiparallel to the j-axis. for h>hc, the second component of v is positive,
rendering the unfavored corner around ( L — 1 , 1) unstable, because the
random walker moves away from the j-axis and the non-local jumps along
this axis become irrelevant in leading order. We have checked this with
Monte Carlo simulations, (see also Section 4).

Neglecting these non-local jumps, from the mean path given by v one
can easily calculate the time taken for a walker starting at U = (L— 1, 1)
to hit the k-axis and to reach the favored corner. One finds the flip time
(3.4). in the same way, (A.2) explains the leading term of (4.7) and (4.9).
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APPENDIX B. THE RWT MODEL WITH ABSORBING
CONFIGURATIONS

In this appendix, we investigate further the relation of flip times and
spectra. We focus on the case where the time that the walker remains in a
phase increases exponentially with the system size.

The flip times Tlong (3.2) and Tshort (3.3) are defined as first passage
times. It is known that the corresponding time scales are related to dynamical
properties, i.e. excitations, of a modified model with an absorbing state.(19)

An absorbing state is a configuration the system cannot escape from. Here we
have to choose U (for Tlong) or F (for Tshort) as the absorbing configuration.

We shall first present the general argument (see ref. 19). Consider a
reaction diffusion system with an absorbing configuration {/?abs} and
described by a master equation (1.2) with a hamiltonian Habs. The system
may start in a configuration {/?0} at time t = 0:

where the subscript of a vector denotes the component {/?}. Let Ex and
| p A > be eigenvalues and eigenvectors of the hamiltonian (E0 = 0 being the
ground state energy). Note that the ground state |p0> is given by

If Habs is diagonalizable, there exist a^ e C such that

Obviously, the probability Pin that the system has not reached its
absorbing state is given by

Denote as p(t) dt the probability that the system reaches {/?abs} during the
time interval [t, t + dt]. Then



858 Arndt and Heinzel

Thus, p(t) is given by

and its mean value, the flip time, is

From the last equation, it follows, under the conditions

that to leading order

The result is similar for any finite number of excited states Ei oc
exp( -miL). In that case, the scale of the flip time is given by the largest mi,
with lim^^ Lya i^0 for some y.

On the other hand, if none of the excited levels approaches zero for
L -» oo, one has

independent of {/?0} (dim(L) is the dimension of the configuration space
for system size L). This implies that there is only one phase in the large L
limit.

We now turn to specific results for the RWT model. We have
diagonalized the modified hamiltonian numerically. From the spectra we
find the length scales ^long and ^Short of the flip times:

• With the favored corner F made absorbing, the scale at (2.1)
remains unchanged as does the gap of the lower band of excitations m1.
This explains the relation {tshort = w (3.7) which is a special case of (B.8).
Similar relations are found analytically for the simplified model discussed
in Appendix C.

The lower gap vanishes at the critical point hc and the 1/L dependence
of the levels is the same as for the non-absorbing RWT model (table C1).
The upper gap changes to a new value m3>m2.

These results confirm the interpretation that the second ground state
(which exists for h<hc,L->co) and the lower band of excitations are
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linked with the metastable phase and with the movement from the
unfavored to the favored corner. The corresponding scales of the spectrum
remain unchanged, while the movement within the favored phase, and
correspondingly the upper band of excitations, is altered by the absorbing
configuration F.

• In the case of an absorbing configuration U in the (originally)
unfavored phase, there is more change to the spectrum. There is a first
excited state E1 oc exp(— w ' L ) with w! = w for any h, connected with two
steady states for L -*• oo. This reflects the fact that, with absorption in the
corner U, both corners U and F constitute a phase for any h. From (B.8)
one has

analogous to (3.7). This relation is consistent with the numerical data to a
precision of about 15%.

Further, the scale w' is related to m2 of the RWT model without an
absorbing configuration. For a = 0.25 one has

As a further change to the spectrum, the lower band of excitations is shifted
to a new band of excitations with, a gap m3 > m2, while the gap m2 remains
unchanged. The new upper band of excitations is related to movement
within the former unfavored corner. Note that m3(h) takes the same values
with either the favored or the unfavored corner made absorbing. The corre-
sponding eigenstates describe the (rapid) movement near an absorbing
corner.

APPENDIX C. ANALYTICAL RESULTS FORM THE RWA
MODEL

In this appendix, we investigate the model defined by Eq. (1.5). It is
expected to give the physics of the RWT model below the spanodal point
hc. We shall indeed see that for the RWRA model there are first passage
times from one corner to the other which increase exponentially with L as
for the RWT model. We calculate their exact expressions (Eqs. (C.8) and
(C.9)) and find the two scales with which these flip times diverge.

We are also able to compute the first excitation (Eq. (C.16)), which
becomes a second ground state in the large L limit, and the first excitation
for the RWRA model with either of the corners made absorbing (Eqs.
(C.20) and (C.21)). The first excitations are proportional to exp( — w L ) . In
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the case of no absorption or absorption at the favored corner, w is equal
to the scale of the short flip time (C.9); and, in the case of the unfavored
corner made absorbing, w is equal to the scale of the long flip time (C.9).
All these results are analogous to those for the RWT model, but here they
are obtained analytically.

We have also computed the free energy functional Eq. (C.26), whose
graph is very similar to that for the RWT model's. As in the RWT model,
the height differences fmax -fmin give the scales with which the flip times
(C.8)-(C.9) diverge.

C.1. Flip Times

As for the RWT model, for h = 0 the random walker stays most of the
time near the points F = (1, L — 1) and U = (L — 1, 1). For h > 0, the point
F is favored and the stable phase is concentrated around this site.

To calculate the flip time from the meta-stable to the stable phase, we
define D j ,k as the first passage time from (j, k) to (1, L— 1).

Concentrating on the first step of the random walker (in an
infinitesimal time interval dt), we find

for j=1 , k = 2,..., L - 2 (cf. ref. 6). This yields

Similarly, the other conditions for the DJ,k read
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From the definition of Dj,k, the boundary conditions are given by

The recurrence relation (C.2) can be solved as

and the condition (C.5) gives us the flip time

Replacing h by —h, we obtain the flip time from favored to unfavored phase

One sees that the flip times diverge exponentially with L. The scales are
."short = log(2/(l -h)) and //long = log(2/(l +h)). This implies that there are
two ground states in the large L limit. Linear combinations of these give
the phases; a stable phase concentrated around F = (1, L — 1), and a meta-
stable around U = (L - 1, 1).

C.2. L Dependence of the First Excitation

With the notation xs = P(s, 1), y, = P ( 1 , s ) and x1 = y1 = P(1 , 1), the
master equation of the RWRA model reads
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Setting xs = e x p ( — E t ) Xs and ys = exp(— Et) Ys, and solving the resulting
recurrence relations, we find the condition on an eigenvalue E,

There is one solution with E0 = 0. The corresponding eigenvector is the
steady state for finite L. For L « 1, the first excited level behaves as

Thus, for L -» oo, one has two stationary states resulting in two phases.
The higher spectrum has a two band structure similar to that for the

RWT model. The corresponding gaps are m1 = (1 — h)/2 and m2 = (1 +h)/2.
Thus, one finds w = m1 for h-> 1. (For the RWT model one has propor-
tionality of w and m1 for any h, see (2.4).) we point out that for the RWRA
model the gap vanishes with a critical exponent x = 1, while for the RWT
model one finds x = 2 (see Eq. (2.4)). This is due to the reduction of the
configuration space.

One can compute the large L behavior of the flip times from the
L-dependence of the first excited level of a modified model (Appendix B).
For the flip time Tshort, one implements an absorbing site at the stable
corner (1, L— 1), replacing equations (C.11) and (C.14) by

With this, one finds a first excited level



With (L — 1, 1) absorbing, instead of (1, L — 1), one analogously obtains

which is indeed consistent with the flip times (C.8) and (C.9) computed
directly above.

C.3. The Stationary Probability Distribution

To calculate the probability distribution of the steady state, one has to
solve equations (C.10)-(C14) for ( d / d t ) x s = (d/dt) ys = 0. One finds
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where the normalization N is

The free energy, defined by (1.3), takes the form

The minima of the free energy functional are at d — — 1 and d — 1, corre-
sponding to the stable and metastable phase respectively. In between, the
free energy functional has a constant slope.

This way, with equations (C.8), (C.9) and (B.8), we find



In conclusion, we have shown that the RWRA model presented in this
appendix captures most of the physics of the RWT model below the critical
point.
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